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Scintillation time distribution

- Scintillation photons have an exponential probability density distribution
in time.

- A collection of n scintillation photons, each independent, will form a time
series. Such a series will form a signal from a photo-multiplier tube.

- For our purposes here, we will assume that the detector has very fast
time response, and no noise. When we measure the time of the pulse, it
is essentially the time of the first photon in the time series.

- The question: given that n scintillation photons have an exponential time
series, what is the probability density function in time of the first
photon ?

The first scintillation photon is obviously one with the minimum time.
Therefore the question can be reframed on the next slide.



X, are nrandom variables, each drawn from a PDF given by P, (x)
Z=Max(X,,X,,...X ), and T =Min(X,,X,,....X,)
It 1s sometimes easier to calculate cumulative proability and then differentiate to

get the density.
Let F, (x) = the cumulative probability that (X < x) = JPX (x)dx
0

1 - F, (x) = the cumulative probability that (X = x)
It 1s obvious that
F,(z)=Probability( X, <zand X, <z and ... X <7)

— HFXi (2)

In words: the probability that the maximum of the series of numbers 1s less than
a value 1s the probability that all numbers are less than that value. Since all the numbers are
independent this 1s just

F,(z)=(Fy(2))"

We now differentiate this to get « | . s = —

B,(2)=nP ()| Fy ()]
Similarly PT (t) = nPX (t)[l _ FX (t)]n—l

min max
all are above all are below



Now let's imagine scintillation photons with time parameter of T

1
Keeping the same nomenclature: P, (x)=—e
T

—-x/T

Fe(x)=[1-e™"

The PDF for the minimum of n photoelectrons is

P (1) =nP ()| 1-(1=e")]"

1
PT (t) —n— e—l‘/T[e—t/T ]n—l
T

P(t)="e"" ... for n>0, t>0
T

The minimum also has an exponential PDF with much smaller time contant.
Time resolution 1s given by the square root of variance of the exponential
T

o=—
n

Counter to the typical instinct of physicists: the time resolution improves linearly with
the number of photo-electrons. This 1s very important !
For liquid argon time constant of 6 ns, pulses of >6 photoelectrons are needed to get

1 ns intrinsic time resolution.



Let's now 1imagine that the light 1s coming from a long track and therefore the

pulse width 1s mostly due to the extent of the event. We start with a uniform flat

distribution.
P,(x)=1/a  for 0 <x<a, and O otherwise
F,(x)=x/a for 0<x<a, and O otherwise

For the first photon coming from a uniform PDF.
P.(t)=nP,(t)[1-t/a]""

P.(1)= E[1 —t/a]™" for 0 <t<a,and O otherwise.
a

a
n+1

The mean of this is (T) =

: : | 2n! 1
and the variance 1s Var[T |=a — :
(n+2)! (n+1)
We will plot the Square root[Var] for a =1 versus n

Notice that for n =1 we recover the usual var=a* /12

As n increases the resolution does not improve linearly.

Suppose the event size 1s 10 ns in time extent, then to
get 1 ns timing will require a lot more than 20

photo-electrons.
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Let's now extend the analysis to calculate the expected resolution including the
fluctuation in the number of photons n.

For the probability density P, (¢), we have assumed a constant number of
photons (n =1). In particular, for n =0, the density 1s undefined. And so

we have to be careful, when working with a fluctuating n. Let's first denote

P.(t) — P, ,(¢) to indicate its dependence on n
A

We now assume that n has Poisson density function P,(n)=e —
n!

The sample space (list of all outcomes) now has two components: there is a
chance that we obtain no time for events with no photons, and of

obtaining a definite # = 0.

If there are non-zero photon then we must weigh each P, (¢) by the probability
of obtaining n and sum up the result.

e " for no definite event time.

Probability(t or no-t) = > A"
Y( ) Ze—/l_'XPT,n(t)
n=1 n.

Notice that the integral of the second term is the probability: (1-e ") of obtaining

a definite time or having at least one photon.



We will now compare the time distribution with and without fluctuation of the
number of detected photons. But only for the case where at least 1 photon is detected.
In case of no fluctuation, we plot P, (¢) where n is replaced by the mean number of
expected photons. We need to renormalize it for the probability of nonzero photons.

We limit ourselves to exponential PDFs for single photons.

Pnoﬂuct (t) = (P_Of_n * O) X PT n(t) — &e—/lt/r > (1 _ e_l)
’ T

P.(t)= i e

We set =6 and A=1, 2, 3,5, and sum upto n=100. The curves with A=1, and 5 are marked
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When fluctuations are present a tail develops in time



—nt/t

: n :
The mean and variance for P, (f)=—e are given by
’ T

M[tl=1/n and Var[t]=7"/n’

ln

n!

For 2 e ?
n=1

PDF by its integral first. And use the definition of of mean as E| ¢ ]| and variance as E [[t2 ]] —(E[¢t])?

X P, ,(t), we need to be a bit careful; recall that we have to normalize the

oo 1

Ze_)“ ‘ X —
M[t]= 7x2L— 27

. 1—e™
Setal [ Fertd
Val‘[t]=21'2 X n=1 n' n2 _7:2 " p— n' n
l—e™ l—e*
Var[t]_ Tz X _22 e—l l” < 1 _ 1 ie_l ln )(l 2|
(- e_l n=1 n! I’l2 1— 6_/1 el n! n

We will now plot this as a function of A for 7=1.
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The exponential parameter is 7=1
The blue curve 1s for no fluctuations, and so mean = 7/ n.
(For the blue curve, n >0 has to be integer)

The orange curve is for Poisson fluctuation.

This is the square-root of the Variance on the first photon time.

The exponential parameter is 7=1

The blue curve is for no fluctuations, and so std dev. o =7 /n.

(For the blue curve, n > 0 has to be integer)

The orange curve is for Poisson fluctuation.

The effect of the long tail is clear on the standard deviation when
mean number of photons is >1.

Incidently, this is only for detected photons, and therefore the standard

deviation has to remain <7 even when the mean photons is very small.



As a final comment we note that there are two additional processes that

could cause variation in the first photon time. These are due to dark current from
the photo-sensor or electronics noise in the front end. Either of these

could cause fluctuations (for example voltage fluctuations) that alter the time

at which the signal goes above threshold. We can simply account for both of these

effects by introducing an additional Gaussian smearing with a parameter, o

From our previous discussion, a convolution of Gaussian with an exponential yields

a "Exponentially modified Gaussian" which we define here.

The Normal PDF U : mean of the Gaussian
| ) o’: variance of the Gaussian
o2 — 52
N(x:p,07)= ! e A:  exponential decay parameter

The Exponential modified Normal PDF

A’o’ B
EN(X:‘U’GZ’A):%eze_l(x_u)ErfC{%(ﬂug_ X ‘LL):|



The answer for the distribution of first photon time including the effects of noise
1S now given by

e " for no definite event time.

Probability(t or no-t) = - "
y( ) Ze‘ﬂ' A XE,(:0 O ,n/T) when there 1s a time

We plot this for some examples. We set 7=6; 0=0.5, 2 and A=1,2,5
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Notice how there is a tail for low number of photons. We leave it
to the reader to calculate the mean and variance of these.

o
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conclusion

- We have calculated the probability density function for
measurement of time from a finite number of detected photons.

- Each photon is assumed to come independently from
scintillation process. We focused on an exponential PDF for the
photon process.

- The first photon was assumed to provide the time.
- We show that the PDF for the time measurement has a significant
positive tail. This tail develops because of fluctuations in the

detected number of photons some of which could come late.

- A detailed calculation can be performed to provide an expression
for the time PDF, its mean, and variance.



